Numerical Solutions of the Von Karman Equations for a Thin Plate
نویسندگان
چکیده
منابع مشابه
A Lagrangian for von Karman equations of large deflection problem of thin circular plate
By the semi-inverse method proposed by He, a Lagrangian is established for the large deflection problem of thin circular plate. Ritz method is used to obtain an approximate analytical solution of the problem. First order approximate solution is obtained, which is similar to those in open literature. By Mathematica a more accurate solution can be deduced. 2002 Elsevier Science Inc. All rights re...
متن کاملConservative Numerical Methods for the Full von Kármán Plate Equations
This article is concerned with the numerical solution of the full dynamical von Kármán plate equations for geometrically nonlinear (large-amplitude) vibration in the simple case of a rectangular plate under periodic boundary conditions. This system is composed of three equations describing the time evolution of the transverse displacement field, as well as the two longitudinal displacements. Pa...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولOn Von Karman's Equations and the Buckling of a Thin Elastic Plate
The object of this note is to demonstrate the applicability of the methods of nonlinear functional analysis in the investigation of a complex physical problem. In 1910 T. von Karman [9] introduced a system of 2 fourth order elliptic quasilinear partial differential equations which can be used to describe the large deflections and stresses produced in a thin elastic plate subjected to compressiv...
متن کاملACCELERATION WAVES IN THE VON KARMAN PLATE THEORY V. VASSILEV and P. DJONDJOROV
where ∆ is the Laplace operator with respect to x and x, D = Eh/12(1 − ν) is the bending rigidity, E is Young’s modulus, ν is Poisson’s ratio, h is the thickness of the plate, ρ is the mass per unit area of the plate middle-plane, δ is the Kronecker delta symbol and ε is the alternating symbol. Here and throughout the work: Greek (Latin) indices range over 1, 2 (1, 2, 3), unless explicitly stat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Modern Physics C
سال: 1997
ISSN: 0129-1831,1793-6586
DOI: 10.1142/s0129183197000357